產(chǎn)品列表 / products
碳排放量是指在生產(chǎn)、運輸、使用及回收該產(chǎn)品時所產(chǎn)生的平均溫室氣體排放量。而動態(tài)的碳排放量,則是指每單位貨品累積排放的溫室氣體量,同一產(chǎn)品的各個批次之間會有不同的動態(tài)碳排放量。我國當前主要的碳排放數(shù)據(jù)由ICPP提供的排放因子及核算方法估算而來,而這些排放因子及計算結果是否與我國實際的排放情況一致還需要驗證,因此碳排放的直接監(jiān)測就是重要的評估與驗證手段之一。
發(fā)展可靠的碳排放監(jiān)測技術,準確而全面獲取碳排放數(shù)據(jù),可以為碳減排措施的制定及其減排效果評估提供有力的技術支撐。
碳排放遙感監(jiān)測方法
該方法對研究區(qū)的土地覆蓋進行分類,反演研究區(qū)的地表溫度,模擬研究區(qū)的碳排放空間分布,對模擬出的研究區(qū)碳排放的值和空間位置進行修正。在對研究區(qū)的土地覆蓋進行分類的步驟中,首先采集TM6多光譜波段數(shù)據(jù)bandl、band2、band3、band4、band5、band7和DEM數(shù)據(jù),并計算反映紋理特征的各特征因子,將計算得到的各特征因子與TM6多光譜波段數(shù)據(jù)和DEM數(shù)據(jù)作為特征層;然后利用研究區(qū)的TM假彩色合成圖像和地圖選擇研究區(qū)樣本點;最后基于樣本點數(shù)據(jù)在各個特征層上的統(tǒng)計數(shù)據(jù),對研究區(qū)進行土地覆蓋分類?;跇颖军c數(shù)據(jù)在各個特征層上的統(tǒng)計數(shù)據(jù),對研究區(qū)進行土地覆蓋分類時,采用分類回歸樹CART算法進行。
在反演監(jiān)測區(qū)域的地表溫度的步驟中,采用單窗算法。在模擬城市的碳排放空間分布的步驟中,采用基于遙感數(shù)據(jù)的熱量空間分布分析方法來模擬城市的碳排放空間分布。采用支持向量機SVM算法,建立研究區(qū)樣本點的碳排放數(shù)據(jù)和城市地表溫度反演結果的回歸模型。
采用Libsvm軟件,建立研究區(qū)樣本點的碳排放數(shù)據(jù)和城市地表溫度反演結果的回歸模型。在對模擬出的研究區(qū)碳排放的值和空間位置進行修正的步驟中,以GIS為基礎平臺,采用改進的高斯模式碳排放擴散修正模型來對模擬出的研究區(qū)碳排放的值和空間位置進行修正。
基于激光誘導擊穿光譜法的燃煤電廠碳排放在線監(jiān)測方法
該方法通過連續(xù)在線測量燃煤含碳量、飛灰含碳量和爐渣含碳量,可計算二氧化碳實時排放,是一種適應我國燃煤電廠實際情況、可連續(xù)在線的二氧化碳排放監(jiān)測方法。從電廠獲取已知數(shù)據(jù),包括燃煤質(zhì)量流量、煤種、鍋爐型式和燃煤收到基灰分。燃煤質(zhì)量流量可以采用電容法測量。使用LIBS方法測量樣品的碳譜線強度IC、硅譜線強度ISi、鋁譜線強度IAl、鐵譜線強度IFe。
根據(jù)樣品種類(分燃煤、飛灰、爐渣三種)將四種元素譜線強度值代入對應的含碳量線性回歸方程(分燃煤、飛灰和爐渣)中,計算出樣品的含碳量。將燃煤含碳量、飛灰含碳量、爐渣含碳量、燃煤收到基灰分、飛灰和爐渣的分配比代入碳氧化率的計算公式中,獲得燃煤的碳氧化率?;谔计胶庠恚商佳趸?、燃煤質(zhì)量流量和燃煤含碳量,計算得燃煤電廠碳排放率和碳排放總量。
基于遙感、衛(wèi)星定位導航和無人機的三維空間碳排放監(jiān)測系統(tǒng)
基于遙感、衛(wèi)星定位導航和無人機的三維空間碳排放監(jiān)測系統(tǒng)中具有:基于衛(wèi)星G-P-S#導航組件、無人機自動駕駛儀組件、碳排放檢測傳感器組件,集成至電動無人機平臺上,與無人機地面指揮控制臺組件、組成生態(tài)環(huán)境立體空間碳排放量監(jiān)測裝置。
衛(wèi)星GPS定位與導航實現(xiàn)航線全自動規(guī)劃,飛行航跡、高度和姿態(tài)高精度計算機自動控制??蓪崟r傳輸測碳數(shù)據(jù)至地面指揮控制臺上生成數(shù)據(jù)分布圖,與無人機的地面碳排放采集點的監(jiān)測數(shù)據(jù)進行數(shù)據(jù)集成,形成按區(qū)域、空域、時域形成立體空間碳排放量數(shù)據(jù)的分布與變化趨勢圖表,解決地面至3000米各高度層的碳排放監(jiān)測技術難題,實現(xiàn)碳排放環(huán)境的立體空間監(jiān)測的區(qū)域時域空域數(shù)值分布可視化。
基于遙感RS技術的三維6IS引擎的立體空間,通過系統(tǒng)仿真技術,將碳排量監(jiān)測數(shù)據(jù)進行三維空間分布可視化,實現(xiàn)區(qū)域間各省市區(qū)的碳匯交易數(shù)據(jù)的海量數(shù)據(jù)立體透視。
基于物理信息融合技術的建筑預制構件運輸碳排放監(jiān)測電路
基于物理信息融合技術的建筑預制構件運輸碳排放監(jiān)測電路包括監(jiān)測控制模塊,在該監(jiān)測控制模塊的識別端經(jīng)識別數(shù)據(jù)傳輸電路與RFID識別模塊連接,監(jiān)測控制模塊的油量采集端經(jīng)油量采集數(shù)據(jù)傳輸電路與油量采集模塊連接,油量采集模塊包括油量傳感器,該油量傳感器經(jīng)油量信號放大電路,油量信號模數(shù)轉換電路后與油量采集數(shù)據(jù)傳輸電路的油量數(shù)字信號輸入端連接,油量采集數(shù)據(jù)傳輸電路數(shù)字信號輸出端與所述監(jiān)測控制模塊的油量采集端連接。
該電路結合實時定位,實現(xiàn)基于運輸距離,運輸耗能基礎上對碳排放實時監(jiān)測。
基于物聯(lián)網(wǎng)的碳排放量監(jiān)測方法
基于物聯(lián)網(wǎng)的碳排放量監(jiān)測方法通過傳感器采集物體的基本信息和用于確定碳排放量的原始數(shù)據(jù),包括以下至少一種:水量、電量、燃氣量、汽油量。傳感器通過傳感器網(wǎng)關將采集的物體的原始數(shù)據(jù)、基本信息發(fā)送至服務器,服務器根據(jù)接收的物體的原始數(shù)據(jù)、基本信息確定所述物體的碳排放量,服務器對確定的物體的碳排放量以及物體的基本信息進行分析處理,以監(jiān)測所述物體的碳排放量。
由于通過傳感器采集物體的用于確定碳排放量的原始數(shù)據(jù)、基本信息,因此,在根據(jù)采集的物體的原始數(shù)據(jù)和基本信息計算物體的碳排放量,以及對計算的碳排放量進行分析處理后,得到的分析處理結果更貼近于實際情況,從而提高了碳排放分析處理結果的準確性與可信度。
基于區(qū)塊鏈的控碳監(jiān)測
基于區(qū)塊鏈的控碳監(jiān)測設備,包括測量設備、控制器、微處理器、執(zhí)行信號輸出器、存儲單元、通訊模塊和區(qū)塊鏈服務器。測量設備與微處理器連接,微處理器與執(zhí)行信號輸出器連接,存儲單元與微處理器連接,控制器與執(zhí)行信號輸出器連接,控制器與測量設備連接。
區(qū)塊鏈服務器通過通訊模塊與微處理器連接,控制器連接外部耗能設備,用于控制耗能設備的打開和關閉。該技術采用區(qū)塊鏈服務器,區(qū)塊鏈作為一種去中心化的全鏈條可見、全節(jié)點可信的分布式賬本技術,具備共識機制、智能合約、時間戳、防篡改防抵賴等特點,可以有效防止數(shù)據(jù)被篡改。
采用有線和無線的通訊方式進行傳輸數(shù)據(jù),滿足大多數(shù)工程的需要,在施工不便的區(qū)域,采用無線方式,不需要單獨埋線,施工方便。當碳排超標時,可通過控制器對碳排設備進行限制。
非分散紅外監(jiān)測技術(NDIR)
非分散紅外吸收法(NDIR)為核心的新型產(chǎn)品,主要用于污染源排放管道中煙氣成分的測量,廣泛應用于環(huán)境監(jiān)測以及熱工參數(shù)測量等部門。采用長光程吸收氣室,檢測精度高,可同時測多種氣體,煙氣預處理器獨T設計,采用加熱采樣管線,避免產(chǎn)生冷凝水和灰塵混合;氣體制冷器-帶溫度檢測,雙級脫水,配備蠕動排水泵,自動排放冷凝水;配合獨C軟件綜合補償算法,有效防止水汽干擾,保證測試數(shù)據(jù)準確性。
儀器工作運行預熱時間短,以非分散紅外分析技術(NDIR)為核心的新型產(chǎn)品,合適的量程、高精度、穩(wěn)定性好。高效濾塵濾芯,防止大顆粒物進入有效保護氣路氣泵,完善的系統(tǒng)診斷和聯(lián)動控制,自動保存并顯示測試數(shù)據(jù),帶微型打印機,即時打印數(shù)據(jù)并可實現(xiàn)與PC機數(shù)據(jù)通訊。分析儀用于測量SO2、NOx、CO2等煙氣成分的濃度,與使用電化學傳感器測量方法的儀器相比,具有測量精度高、可靠性強、響應時間快、使用壽命長等優(yōu)點。
光腔衰蕩光譜技術(CRDS)
光腔衰蕩光譜技術是近幾年來迅速發(fā)展起來的一種高靈敏度的吸收光譜檢測技術。幾乎每種小的氣相分子(例如,CO2,H2O,H2S,NH3)都具有獨T的近紅外吸收光譜。在低于大氣壓的壓強下,它由一系列狹窄、分辨良好的尖銳波譜曲線組成,每條曲線都具有特征波長。
因為這些曲線間隔良好并且它們的波長是已知的,所以可以通過測量該波長吸收度,即特定吸收峰的高度來確定任何溫室氣體的濃度CRDS技術與傳統(tǒng)吸收光譜檢測方法有著本質(zhì)的區(qū)別:CRDS技術測量光在衰蕩腔中的衰蕩時間,該時間僅與衰蕩腔反射鏡的反射率和衰蕩腔內(nèi)介質(zhì)的吸收有關,而與入射光強的大小無關,因此,測量結果不受脈沖激光漲落的影響,具有靈敏度高、信噪比高、抗GANRAO 能力強等優(yōu)點,被廣泛應用于生物、化學、物理及地球和環(huán)境科學研究領域。
離軸積分腔輸出光譜技術原理(ICOS)
積分腔輸出光譜技術的核心是光學諧振腔理論,光學諧振腔作為一種光學諧振器能夠允許光束在內(nèi)來回振蕩,通過電磁波理論首先分析了光在空腔內(nèi)的傳輸機理得到了透射光強的表達式,其次假設腔內(nèi)存在吸收介質(zhì),那么在吸收介質(zhì)的作用下滿足Beer-Lambert定律光束能量每次被高反射率鏡片反射時都會被吸收,最終能量疊加得到ICOS的具體表達式。
另外,ICOS的另一大特點就是離軸入射,當光束偏離光軸入射并滿足“再入射"條件時,那么原有共軸狀態(tài)下光學諧振腔的FSR將會下將到原有的1/μ倍,從表現(xiàn)來看就是光學諧振腔的FSR“致密化",同時光束的能量也會被分隔到每個腔模上。而當FSR趨近于0時,則每個腔模上光束的能量都會相同,此時測量到的吸收光譜信號將不再是離散點,而是類似于直接吸收的連續(xù)吸收光譜信號。
正是因為OA-ICOS的這種技術優(yōu)勢,入射光在進入光學諧振腔時將不需要滿足嚴格的模式匹配條件,所以對光學諧振腔的穩(wěn)定性要求比較低,同時對于外界環(huán)境諸如振動等影響的敏感性也會降低,非常適合將此技術應用于大氣CO2、CH4監(jiān)測儀器或樣機的集成。
連續(xù)排放監(jiān)測系統(tǒng)(CEMS)
連續(xù)排放監(jiān)測系統(tǒng)分別由氣態(tài)污染物監(jiān)測子系統(tǒng)、顆粒物監(jiān)測子系統(tǒng)、煙氣參數(shù)監(jiān)測子系統(tǒng)和數(shù)據(jù)采集處理與通訊子系統(tǒng)組成。
氣態(tài)污染物監(jiān)測子系統(tǒng)主要用于監(jiān)測氣態(tài)污染物CO2、SO2、NOx等的濃度和排放總量;顆粒物監(jiān)測子系統(tǒng)主要用來監(jiān)測煙塵的濃度和排放總量;煙氣參數(shù)監(jiān)測子系統(tǒng)主要用來測量煙氣流速、煙氣溫度、煙氣壓力、煙氣含氧量、煙氣濕度等,用于排放總量的積算和相關濃度的折算;數(shù)據(jù)采集處理與通訊子系統(tǒng)由數(shù)據(jù)采集器和計算機系統(tǒng)構成,實時采集各項參數(shù),生成各濃度值對應的干基、濕基及折算濃度,生成日、月、年的累積排放量,完成丟失數(shù)據(jù)的補償并將報表實時傳輸?shù)较嚓P部門。
CEMS采用高精度電化學氣體傳感器,通過傳感器、光譜分析等技術,連續(xù)、自動地監(jiān)測環(huán)境中的CO2、CH4、NH3、N2O濃度等參數(shù)得到碳排放量,精度高、響應速度快、重復性好,實現(xiàn)碳排放核算的實時化、自動化。
同時,利用實時監(jiān)測數(shù)據(jù),建立基于監(jiān)測數(shù)據(jù)的碳排放核算方法體系,可進一步提升碳排放核算數(shù)據(jù)的準確性和實時性。
可調(diào)諧二極管激光吸收光譜技術(TDLAS)
可調(diào)諧二極管激光吸收光譜技術是將調(diào)制光譜技術與長光程吸收技術相結合,所產(chǎn)生的一種痕量氣體檢測技術,具有高靈敏度、高分辨率、響應速度快、非侵入性等特點,可對痕量氣體進行即時分析。
以分布反饋式(DFB)二極管激光器作為光源(中心波長1.431μm),采用波長調(diào)制-二次諧波法對二氧化碳濃度進行了高靈敏度探測, 并在此基礎上實現(xiàn)了大氣中氣體的探測與濃度反演,驗證了該系統(tǒng)在井下對二氧化碳濃度的實時監(jiān)測可行性。
用戶電表耦合碳排放量監(jiān)測系統(tǒng)和方法
用戶電表耦合碳排放量監(jiān)測系統(tǒng)包括處理器、電量計量模塊、碳排放量監(jiān)測及計算模塊、通訊模塊,所述通訊模塊、電量計量模塊、碳排放量監(jiān)測及計算模塊分別與所述處理器連接。
處理器、電量計量模塊和通訊模塊設置在常規(guī)電表內(nèi),碳排放量監(jiān)測及計算模塊和另一通訊模塊設置在碳排放監(jiān)測器內(nèi),另一通訊模塊和碳排放量監(jiān)測及計算模塊連接,并且與常規(guī)電表內(nèi)的通訊模塊通訊連接;另一通訊模塊和網(wǎng)絡或碳排放碳資產(chǎn)管理云平臺通訊連接。
處理器、電量計量模塊、碳排放量監(jiān)測及計算模塊和通訊模塊設置在智能電表內(nèi),通訊模塊通訊連接于網(wǎng)絡或碳排放碳資產(chǎn)管理云平臺。碳排放量監(jiān)測及計算模塊采用區(qū)塊鏈技術時,碳排放量監(jiān)測及計算模塊利用分布式的節(jié)點進行分布式碳排放記賬,每個節(jié)點的碳排放量數(shù)據(jù)不可篡改地分布式保存在網(wǎng)絡中。碳排放量監(jiān)測及計算模塊采用區(qū)塊鏈網(wǎng)絡中的公有鏈、聯(lián)盟鏈或私有鏈技術,并利用區(qū)塊鏈技術與其他區(qū)塊鏈節(jié)點進行點對點的碳資產(chǎn)交易。碳排放量監(jiān)測及計算模塊不采用區(qū)塊鏈技術時,碳排放量監(jiān)測及計算模塊利用中心化的碳排放碳資產(chǎn)管理云平臺,統(tǒng)一進行碳排放量計算和碳資產(chǎn)管理。電量計量模塊和碳排放量監(jiān)測及計算模塊均配置有加密管理單元,所述加密管理單元用于對數(shù)據(jù)進行加密和管理用戶的加密信息。
該方法實現(xiàn)用電量和碳排放量兩種數(shù)據(jù)的直接采集,避免了人工抄表統(tǒng)計和計算所造成的誤差和爭議,會極大幫助對各省市區(qū)域電網(wǎng)內(nèi)的電用戶的碳排放量的監(jiān)控,從而從硬件上幫助碳排放量和其相關碳資產(chǎn)的統(tǒng)計和計算,增加碳資產(chǎn)的可信度,幫助建立未來全國乃至全球的統(tǒng)一碳市場。
機動車尾氣檢測法
目前有多種對尾氣進行檢測的方法,主要包括底盤測功機檢測法、遙感檢測法、車載尾氣檢測法等。底盤測功機檢測法是傳統(tǒng)的尾氣檢測法,也是當前汽車檢測中常用的方法。通過預設車輛行駛工況,結合氣體分析儀和底盤測功機來對排放尾氣進行檢測。
由于行駛工況的復雜性,尤其是城市行駛工況復雜多變,使用該方法時檢測結果會存在誤差。遙感檢測法是利用氣體吸收光譜技術來對尾氣排行中不同成分的比例進行檢測,具有檢測速度快、精確度高等優(yōu)點。但由于采用遙感檢測法只能對尾氣組成成分的濃度進行檢測,且測試時環(huán)境要求較高,因此使用范圍受到限制。
尾氣檢測法是目前高?;蜓芯吭菏褂幂^為廣泛的尾氣檢測方法。通過在安裝尾氣檢測設備,對行駛特征參數(shù)和尾氣排放情況進行檢測。利用該方法進行檢測時,可以實時檢測行駛工況、時段的尾氣排放情況數(shù)據(jù),檢測精度高,因此應用前景較為廣泛。
基于AIS的區(qū)域船舶碳排放監(jiān)測方法
對區(qū)域交通流量、ais配備情況和碳排放數(shù)據(jù)進行調(diào)研,確定船舶的登記信息;接收區(qū)域內(nèi)船舶的ais信號以獲取實船數(shù)據(jù),建立區(qū)域船舶碳排放評估模型;根據(jù)所述實船數(shù)據(jù)、所述登記信息和所述區(qū)域船舶碳排放評估模型得到區(qū)域碳排放評估數(shù)據(jù);其中,所述登記信息包括船舶檔案信息和燃油供應單信息,所述實船數(shù)據(jù)包括船舶航速、船舶排水量、船舶航程、船舶停泊時間和船舶實測碳排放。
在本方法中,在建立單船碳排放計算模型后用實船數(shù)據(jù)進行數(shù)值模擬,與實船實測碳排放數(shù)據(jù)進行對比,優(yōu)化單船碳排放計算模型,使得單船碳排放計算模型更加準確,從而使依據(jù)單船碳排放計算模型建立的區(qū)域船舶碳排放評估模型更加準確。
交通碳排放量的監(jiān)測方法
獲取待監(jiān)測區(qū)域中道路交通上行駛車輛的車輛信息,并基于所述車輛信息和與所述車輛信息對應的排放系數(shù),獲得所述道路交通上的交通碳排放量。獲取待監(jiān)測區(qū)域中客運樞紐站內(nèi)車輛的行駛信息,并基于所述行駛信息和與所述行駛信息對應的第二排放系數(shù),獲得所述客運樞紐站的第二交通碳排放量。基于所述交通碳排放量和所述第二交通碳排放量,獲得所述待監(jiān)測區(qū)域的交通碳排放量。
民用機場橋載設備和APU碳排放監(jiān)測系統(tǒng)
民用機場橋載設備和APU碳排放監(jiān)測系統(tǒng)包括電力監(jiān)測系統(tǒng),嵌入式控制器,網(wǎng)關設備,內(nèi)網(wǎng)安全隔離設備,設備管理和互聯(lián)網(wǎng)接入服務器,客橋車數(shù)據(jù)采集設備,客橋車數(shù)據(jù)接收設備及廊橋監(jiān)測系統(tǒng)。電力監(jiān)測系統(tǒng)與橋載設備相連,客橋車數(shù)據(jù)采集設備與客橋車相連,客橋車數(shù)據(jù)接收設備與客橋車數(shù)據(jù)采集設備連接,廊橋監(jiān)測系統(tǒng)與廊橋連接,嵌入式控制器與電力監(jiān)測系統(tǒng),客橋車數(shù)據(jù)接收設備和廊橋監(jiān)測系統(tǒng)相連,同時通過網(wǎng)關設備與內(nèi)網(wǎng)安全隔離設備及設備管理和互聯(lián)網(wǎng)接入服務器相接。
該系統(tǒng)可實時計算和顯示民用機場近機位和遠機位上橋載設備和飛機APU的碳和其他污染物排放量,有助于提高機場低碳運營管理,促進機場節(jié)能減排工作開展。
成像相機和路徑集成傳感器檢測技術
成像相機和路徑集成傳感器是最有商業(yè)化應用前景的甲烷檢測技術。成像相機主要為光學氣體成像相機,路徑集成傳感器主要包括激光取樣器和氣體過濾式關聯(lián)輻射計。與之前同類儀器相比,這兩類儀器質(zhì)量更輕,價格更低廉, 操作更簡單, 泄漏檢測與修復的成本也比較低。特別是成像相機,可手持或固定安裝,還可通過無人機進行大范圍檢測,能夠即時發(fā)現(xiàn)泄漏或排放源。
水稻種植碳排放監(jiān)測系統(tǒng)
水稻種植碳排放監(jiān)測步驟如下:建立水稻種植碳排放計算模型;結合遙感技術從區(qū)域尺度描述水稻碳足跡時空變化;碳足跡分析與展示平臺構建;建設基于B/S架構的農(nóng)業(yè)碳足跡分析與展示系統(tǒng)。
與現(xiàn)有技術相比,該方法的有益效果是:可以支持研究者、管理者或使用者實現(xiàn)對農(nóng)業(yè)生產(chǎn)過程中碳排放的在線獲取和可視化分析并對項目中的各類測量數(shù)據(jù)、分析結果進行集中統(tǒng)一管理,作為共享數(shù)據(jù)、碳足跡計算,多樣化展示的工作平臺。
硫化過程嵌入式碳排放監(jiān)控與檢測系統(tǒng)
硫化過程嵌入式碳排放監(jiān)控與檢測系統(tǒng)包括能耗傳感器,能耗采集單元,碳排放監(jiān)控單元和嵌入式碳排放處理單元。能耗采集單元通過網(wǎng)絡獲得能耗傳感器采集的能耗數(shù)據(jù),并將能耗數(shù)據(jù)傳送給碳排放監(jiān)控單元和嵌入式碳排放處理單元進行處理。碳排放監(jiān)控單元根據(jù)異常檢測模型進行異常告警處理,嵌入式碳排放處理單元包括碳排放獲得單元,碳排放優(yōu)化識別單元和檢測單元。碳排放獲得單元包括修正單元和處理單元。
該系統(tǒng)在碳排放監(jiān)控與檢測系統(tǒng)架構等方面有較大突破,同時對于提高企業(yè)節(jié)能管理水平,加大節(jié)能技術改造,減輕環(huán)境污染,緩解能源瓶頸制約,實現(xiàn)的節(jié)約發(fā)展,清潔發(fā)展和可持續(xù)發(fā)展具有十分重要的戰(zhàn)略意義和現(xiàn)實意義。
基于激光大氣碳排放檢測方法
該方法采用2003nm波段的激光器測量CO2,采用1654nm波段的激光器測量CH4,通過主控模塊分時產(chǎn)生兩路調(diào)制信號輸出給激光器驅(qū)動模塊,激光器驅(qū)動模塊驅(qū)動兩個激光器發(fā)出激光,兩束激光采用光纖合束器進行合束,合束后的激光通過固定長度的多次反射吸收池,所述的吸收池內(nèi)安裝有吸氣泵,使用內(nèi)置吸氣泵實時置換吸收池內(nèi)的空氣,所述的吸收池的尾部安裝有探測器,激光穿出吸收池后被探測器探測,探測器將光信號轉換為電信號,并將電信號發(fā)送給主控模塊,主控模塊實時計算出大氣中CO2和CH4濃度的波動。